GIORNALE

DI MATEMATICHE

AD USO DEGLI STUDENTI

DELLE UNIVERSITÀ ITALIANE

PUBBLICATO PER CURA DEL PROFESSORE

G. BATTAGLINI

4248

NAPOLI
BENEDETTO PELLERANO EDITORE
LIBRERIA SCIENTIFICA E INDUSTRIALE
Strada di Chiaia, 60

Stab. Tip. Angelo Trani Strada Medina 25.

INDICE

•	
Sviluppo di un determinante ad elementi polinomii; per M. Albeggiani. Pag.	1
Ogni equazione del grado n ha n radici; per V. Valeriani	~ 33
Quistione 35; per F. Tirelli	46, 98
Nota intorno alle derivate d'ordine superiore delle funzioni di funzioni; per	
A. Fais	47
Sulla Geometria Projettiva; per G. Battaglini	- 49
Annunzio bibliografico	71
Remarques sur l'enseignement de la Trigonométrie; per J. Hoûel . »	72
Articolo bibliografico; per A. Armenante	80
Sul concetto di proporzionalità nell'aritmetica generale; per A. M. Bustelli. »	82
Soluzione analitica delle equazioni biquadratiche complete; per V. Valeriani.	99
Dimostrazione d'una formola d'analisi di F. Lucas; per M. Albeggiani. »	107
Esercizii; per R. Nicodemi	113
Sull'accelerazione normale; per D. Padelletti	115
Sulle accelerazioni di ordine superiore al primo; per D. Padelletti . »	129
Esercitazioni matematiche; per A. Mogni	150
Nota intorno ad una superficie di ottavo ordine; per G. Battaglini . »	155
Alcune formole spettanti alla teoria infinitesimale delle superficie; per G.	
Frattini	161
Questione 36; per F. Tirelli	167,225
Note sur les démonstrations de deux théorèmes données par M. Cremona dans	
ses Eléments de Géometrie Projective; par M. E. Dewulf	168
Analogie sull'enunciato di Viviani; per L. Crocchi	
Sulla derivazione successiva delle funzioni composte; per F. Mossa . »	175
Sulla projezione centrale; per A. Mogni	186
Soluzione della Questione 35; per F. Angelitti	198
Sopra una proprietà delle brachistocrone; per D. Padelletti »	204
Osservazioni sulle quadriche in coordinate di piani; per G. Pittarelli . »	204, 298
Sopra un sistema omaloidico formato da superficie di ordine n con un punto	201, 200
(n-1)plo; per R. De Paolis	226, 282
De quaestione radicum realium cuiuslibet aequationis numericae unius inco-	,
	249

Su di una equazione differenziale di primo ordine a un numero qualunque di	
variabili; per G. Pittarelli	323
Sopra una corrispondenza di rette fra loro e di punti fra loro; per F. Aschieri. »	328
Soluzione dei problemi proposti negli esami per i licei, e gl'istituti tecnici;	
per V. Cerruti	337
Intorno all'integrazione delle equazioni differenziali totali di 1º ordine e di	
1º grado; per A. Fais	344
Notizie storiche relative alla teoria delle trasformazioni in Geometria Descrit-	
tiva; per G. Torelli	352
Soluzione della Questione 36; per A. Landriani	356
Sui sistemi di curve piane; per O. Tognoli »	359
Sopra alcuni luoghi ed inviluppi di 1º e 2º grado in Geometria Projettiva;	
per E. D'Ovidio	363

GIORNALE

DI MATEMATICHE

AD USO DEGLI STUDENTI

DELLE UNIVERSITÀ ITALIANE

SVILUPPO DI UN DETERMINANTE AD ELEMENTI POLINOMI

PER

M. ALBEGGIANE

Studente nell'Università di Palermo.

1

1. In una precedente nota (*) abbiamo dimostrato, che se un determinante del grado n ha i suoi elementi binomi, cioè se presentasi della forma:

$$\begin{vmatrix} (a_1 \ \alpha_1)_{1,1} + (a_2 \ \alpha_2)_{1,1}, & (a_1 \ \alpha_1)_{1,2} + (a_2 \ \alpha_2)_{1,2}, & \dots & (a_1 \ \alpha_1)_{1,n} + (a_2 \ \alpha_2)_{1,n} \\ (a_1 \ \alpha_1)_{2,1} + (a_2 \ \alpha_2)_{2,1}, & (a_1 \ \alpha_1)_{2,2} + (a_2 \ \alpha_2)_{2,2}, & \dots & (a_1 \ \alpha_1)_{2,n} + (a_2 \ \alpha_2)_{2,n} \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ (a_1 \ \alpha_1)_{n,1} + (a_2 \ \alpha_2)_{n,1}, & (a_1 \ \alpha_1)_{n,2} + (a_2 \ \alpha_2)_{n,2}, & \dots & (a_1 \ \alpha_1)_{n,n} + (a_2 \ \alpha_2)_{n,n} \end{vmatrix}$$

può essere sviluppato per le somme dei prodotti di tutti i possibili determinanti minori di complemento dei gradi 0, 1, 2, ... n dei sistemi di elementi monomi ed omogenei $(a_1 \alpha_1), (a_2 \alpha_2)$, facendo nei determinanti:

$$\begin{vmatrix} (a_1 \alpha_1)_{1,1}, & (a_1 \alpha_1)_{1,2}, & \dots & (a_1 \alpha_1)_{1,n} \\ (a_1 \alpha_1)_{2,1}, & (a_1 \alpha_1)_{2,2}, & \dots & (a_1 \alpha_1)_{2,n} \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ (a_1 \alpha_1)_{n,1}, & (a_1 \alpha_1)_{n,2}, & \dots & (a_1 \alpha_1)_{n,n} \end{vmatrix}, \begin{vmatrix} (a_2 \alpha_2)_{1,1}, & (a_2 \alpha_2)_{1,2}, & \dots & (a_2 \alpha_2)_{1,n} \\ (a_2 \alpha_2)_{2,1}, & (a_2 \alpha_2)_{2,2}, & \dots & (a_2 \alpha_2)_{2,n} \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ (a_2 \alpha_2)_{n,1}, & (a_2 \alpha_2)_{n,2}, & \dots & (a_2 \alpha_2)_{n,n} \end{vmatrix}$$

di essi sistemi di elementi le combinazioni delle classi 0, 1, 2, ... n simultaneamente delle orizzontali e delle verticali, sicche lo sviluppo di quel determinante, che diremo ${}_{(2)}\Delta^{(n)}$, fu trovato essere:

$${}_{(2)}\Delta^{(n)} = \Delta_1^{(n)} + \Sigma \Delta_1^{(n-1)} \cdot \Delta_2^{(1)} + \dots + \Sigma \Delta_1^{(n-m)} \cdot \Delta_2^{(m)} + \dots + \Delta_2^{(n)}, \quad \dots \quad (I),$$

ove $\Delta_1^{(n-m)}$ è un determinante del grado (n-m) contenente solo elementi $(a_1 a_1)$, e $\Delta_2^{(m)}$ è il suo minore complementare composto dei soli elementi $(a_2 a_2)$.

4

^(*) Questo Giornale Vol. X pag. 279. Vol. XIII.